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Abstract—The problem of residual stress-driven axisymmetric delamination in successively
deposited isotropic multi-layers is addressed in this study. A circular-shaped multi-layer is modeled
with a delamination crack extending uniformly from the free edge. Applications for this work
include the modeling of residual stress-driven delamination of multi-layered coatings and films.
The application of specific interest is residual stress-driven debonding in parts created by layered
manufacturing methods, where molten metal layers are successively deposited to form three-dimen-
sional shapes. Results for energy release rates as a function of delamination crack length are
presented from fracture mechanics models of various axisymmetric multi-layer geometries. Results
are compared to those from planar delamination problems. Methods are outlined for determining
a conservative upper bound for the maximum energy release rate for an axisymmetrically extending
delamination crack. These methods are based on potential energy calculations from a residual stress
model for an uncracked multi-layer and do not require fracture mechanics modeling. The easily
calculated bound for the maximum energy release rate can be used to guide the design of delami-
nation-resistant multi-layers. € 1997 Elsevier Science Ltd.

1. INTRODUCTION

This study addresses the problem of residual stress-driven axisymmetric delamination of
successively deposited isotropic multi-layers. The term successively deposited is used to
designate that each layer has experienced free thermal contractions relative to the layers
below it. Applications of the methods outlined in this work include the analysis of delami-
nation problems in electronic components such as integrated circuits, hard disk drives
and electronic packaging. The manufacture of these components typically involves the
deposition of multiple layers or films at elevated temperatures. Similarly, methods from
this study can be applied to the delamination or peeling of multi-layered coatings, such as
those used to protect metal parts from corrosion. In many applications of these types and
in muiti-layered test specimens, an understanding is needed of delamination of axisymmetric
geometries.

The application serving as the principal motivation for this work is the problem of
delamination in parts built using rapid prototyping-based layered manufacturing processes
(see Marcus and Bourell (1993)). These processes involve the construction of three-dimen-
sional parts by first creating a computed-aided design (CAD) drawing of the part to be
built. The drawing is electronically sectioned into layers and the 3-D part is then built by
successive layer deposition. The goal of these processes is to transition from the creation of
a 3-D polymer model of a part (an established technology of which stereolithography is an
example) to the creation of actual parts made of one or more metals.

The particular process of interest for this work has been termed shape deposition
manufacturing (see Prinz et al. (1995)). This process involves layer deposition followed by
computer numerically controlled machining of that layer to shape. The deposition method
currently used in this process has been termed microcasting. In microcasting, material is
deposited onto existing layers of a part in the form of molten metal droplets. The radius of
each molten droplet is comparable to the layer thickness, which is on the order of 2 mm.
The microcasting process gives rise to residual stresses, which can lead to delamination at
layer interfaces. As noted in Chin ez al. (1995), residual stress build up during this process
is complicated. It includes effects of both the contraction of individual droplets and the
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thermal loading of existing material by deposited droplets. The stress model used to
demonstrate the methods of this study will not accurately represent the stress distributions
in actual microcast parts ; however, once accurate stress models are fully developed for this
process, they can be used with the methods outlined in this study.

Although three-dimensional parts created using layered manufacturing methods can
be of arbitrary shape, it is typical for parts to include some features that can be modeled as
two-dimensional. These include thin-wall and rectangular plate features as well as circular
plate features with axisymmetric symmetry. This study addresses axisymmetric delami-
nation geometries. Delamination of thin-walled and rectangular plate geometries has been
addressed in Beuth and Narayan (1996). In addition to direct application of the results of
this study to axisymmetric features in three-dimensional parts, the methods developed here
also have relevance to fully three-dimensional delamination problems. It is shown in this
study that the energy release rate behavior of axisymmetric delamination problems is more
complicated than that observed in planar geometries. An understanding of the axisymmetric
problem is gained, however, by considering appropriate steady-state energy release rates.
Although it is not pursued in this study, it is likely that insights could also be gained in
fully three-dimensional delamination problems by similar comparisons of observed energy
release rates with steady-state energy release rates.

The axisymmetric configuration considered in the present work is related to two planar
two-dimensional multi-layer debonding geometries studied by Beuth and Narayan (1996).
These two planar problems and the axisymmetric problem are illustrated in Fig. 1, which
shows three four-layer configurations with debonding taking place at the mid-plane of each
multi-layer. In the problem illustrated in Fig. la, delamination occurs in a thin-walled
multi-layer, with a crack of uniform length, a, extending from the free edge. Because the
multi-layer is thin, each layer is in a state of plane stress, with a uniaxial state of stress (a,,)
in each layer away from the crack front and the free edges. In Beuth and Narayan (1996)
it is demonstrated that for a sufficiently long delamination crack, the crack tip energy
release rate, G, reaches a constant (steady-state) value, designated as G,. Furthermore, G|,
can be calculated using only a model of residual stress for uncracked multi-layers. Thus, a
fracture mechanics model of the problem (e.g., a finite element model of the cracked raulti-
layer) is not needed.

The second type of two-dimensional delamination problem 1s similar to the first;
however, the geometry is that of a multi-layered rectangular plate (Fig. 1b) instead of a
thin wall. A delamination crack has initiated at the free edge and is propagating with a
crack front that is parallel to the z axis. For this type of problem (see Beuth and Narayan
(1996)), free thermal contractions which are independent of location in the plane of the
deposited layers result in a biaxial state of residual stress (o, = 0..) in each layer, away
from the crack front and the free edges. As in the thin-wall configuration, the crack tip
energy release rate reaches a steady-state value for a sufficiently long crack and this value,
designated in this study as G, can be calculated without use of a fracture mechanics
model.

The third problem type, which is analyzed in the present work, is an axisymmetric
configuration consisting of a circular multi-layer with the crack front initiating at the free
edge and moving toward the multi-layer center (Fig. 1c). Asin the rectangular plate problem
of Fig. 1b, free thermal contractions result in a biaxial state of stress (g, = 0y) in each
layer, away from the crack front and the free edges. It is shown, however, that unlike the
problems of Figs la and 1b, the energy release rate of the delamination crack does not
reach a constant value for long crack lengths.

This study not only builds on previous work on multi-layers by the authors, but also
on work by others in modeling the debonding of single thin films. As in multi-layer
problems, debonding of thin, bonded single films can be divided into planar (thin-wall or
rectangular plate) and axisymmetric configurations. The idea of seeking easy-to-calculate
constant (steady-state) energy release rates for such problems is articulated in the review
paper by Hutchinson and Suo (1991). Steady-state concepts are directly applicable to
planar problems of thin, bonded films in tension. Examples of the application of steady-
state concepts to tensile film debonding include the work of Drory et al. (1988) and Evans
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Fig. 1. (a) Planar delamination: plane stress (b) planar delamination: biaxial stress and (¢) axi-
symmetric delamination : biaxial stress.

et al. (1988). In the thin film problem (as opposed to the multi-layer problem) formulae for
steady-state energy release rates take simple forms due to assumptions of uniform stress in
the film, no stress in the substrate material and the fact that debonded portions of the film
as stress free. The concept of steady-state cracking is generally not applicable to problems
of planar debonding of thin films in compression (see, for example, Evans and Hutchinson
(1984), Jensen (1993) and Stringfellow and Freund (1993)). In compression, debonding
occurs by film buckling away from the free edges. Such failures do not result in steady-state
energy release rates for long cracks.

Delaminations having axisymmetric geometries can occur in thin, bonded films in the
presence of biaxial stress. In compression, the failure geometry is one of blister-shaped
spalling and, as in compressive planar geometries, steady-state behavior is not observed
(see Hutchinson, Thouless and Liniger (1992)). In thin, bonded films in tension, the
geometry is analogous to the multi-layer geometry shown in Fig. 1c, with a circular crack
front moving from the edge of the film toward its center. The energy release rate behavior
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of such problems is demonstrated by Drory et al. (1988) and Evans et al. (1988). In contrast
to the planar problem, the axisymmetric film debonding problem exhibits energy release
rates that increase steadily with crack length, until the film has almost completely debonded
from the substrate. Explanations for the observed differences in energy release rate behavior
for planar and axisymmetric problems have not been offered in the literature, even for the
simple case of thin film debonding. Similarly, no attempts have been made to quantify
axisymmetric energy release rates in ways analogous to those for steady-state energy release
rates of planar problems.

The current study addresses the need in the literature for an understanding of axi-
symmetric delamination in multi-layers. This work not only demonstrates the nature of the
energy release rate behavior for such problems, but also offers explanations of observed
behavior and methods for approximating it based on its relation to that of the planar,
steady-state problem. A detailed problem description is given in the next section. A descrip-
tion 1s then given of the finite element model used to determine energy release rates for
axisymmetrically extending delamination cracks. Energy release rate results are presented
as a function of delamination crack length for various multi-layer configurations. The
numerical results are followed by an analysis of the problem, leading to the determination
of a conservative upper bound for the maximum energy release rate for an axisymmetrically
extending delamination crack, designated as Gim!'. Values for GI™ can be calculated
without performing a fracture analysis of the problem and can substantially simplify the
task of designing delamination-resistant axisymmetric multi-layer stacking geometries.

2. PROBLEM DESCRIPTION

The geometry of the axisymmetric delamination problem is illustrated in Fig. Ic, which
shows a circular multi-layer with a residual stress-driven delamination crack of length a
(see the cut-out portion of the figure) extending uniformly from the free edge. Both global
(r and z) and crack tip (x and y) coordinates are designated in the figure. Each layer may
be of a different material. Although the delamination is illustrated in Fig. lc as occurring
on the mid-plane interface, it may occur along any interface in the multi-layer. Residual
stresses in the multi-layer are assumed to be the result of deposition of each layer onto the
(existing) layers below it. The key assumption made in this study is that free thermal
contractions resulting from layer deposition are independent of the r and @ coordinates.
This results in an r- and 6-independent biaxial stress state within the multi-layer, away from
the delamination front and the free edges.

The techniques outlined in this study can be applied to any multi-layer delamination
problem of the type just described. However, in this study a specific sub-class of problems
is modeled, which serves to illustrate the generic attributes of all problems of this type. In
all of the cases presented in this work, successive deposition is modeled by assuming that
each layer experiences a uniform (independent of not only r and 6 but also z) free thermal
contraction (characterized by a free thermal strain @AT) relative to the layers below it. It
is assumed that residual stress build up in the multi-layer is elastic. It is also assumed that
all layers are deposited and cooled to room temperature before any bending deformation
takes place. This final assumption models a multi-layer which is fully constrained from
bending deformation during its construction, but is then released upon completion. This
constraint condition is close to actual constraint conditions applied in shape deposition
manufacturing, the application motivating the present work.

3. NUMERICAL METHOD

The finite element model used in this study is illustrated in Fig. 2, which shows a typical
deformed element mesh. The model consists of eight-noded axisymmetric biquadratic
displacement interpolation elements generated using the finite element package ABAQUS.
The model illustrated consists of four layers of equal thickness, 4, with the crack located at
the mid-plane of the multi-layer. The right edge defines the z axis of the model, where
boundary conditions of zero radial displacement are applied. A refined mesh is used near
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Fig. 2. Far-field and near-tip finitc element meshes for a four-layer axisymmetric problem.

the crack tip, which has elements focused toward the tip. Quarter-point elements are used
at the crack tip to capture the 1 /\ﬂ' near-tip strain dependence. For the results presented
in this study, the near tip mesh consists of 18 rings of elements meshed over a length equal
to half the layer thickness. Energy release rate results for various material combinations
and multi-layer geometries are presented in the next section. Energy release rates are
extracted from the model using multiple J contour integrals evaluated near the crack tip.
Essentially path-independent J integral values are observed outside of the first or second
ring of elements around the crack tip and these are the values reported in this study.

4. NUMERICAL RESULTS

In this section, results for energy release rates as a function of crack length are presented
for various axisymmetric multi-layer delamination problems. In order to limit the number
of cases studied, only two-layer and four-layer configurations with layers of equal thickness,
h, are modeled. In order to demonstrate the relationship between planar and axisymmetric
problems, axisymmetric energy release rate results are compared to those for plane stress
(thin-wall) planar delamination problems (Fig. 1a) having the same layering configuration.

The energy release rate behavior of multi-layer delamination problems having planar
geometries (Figs 1a and 1b) is detailed in Beuth and Narayan (1996). Because it is related
to the axisymmetric problem, a brief overview of planar delamination is given here. In the
planar problems illustrated in Figs 1a and 1b, it is assumed that material in each layer has
experienced a free thermal contraction with respect to the layers below it and that this
contraction is independent of the x coordinate. Under such conditions, for a sufficiently
long delamination crack, the near-crack-tip stress distribution simply translates in the x
direction as the crack extends. This steady-state condition results in a constant-valued
energy release rate, designated in this study as G,, or G5 for the problems of Fig. 1a or
Ib, respectively. By definition, the energy release rate, G, is the potential energy released
per unit newly created crack surface. The steady-state energy release rate can thus be
calculated as the difference in potential energy per unit width per unit length between
portions of the multi-layer far ahead of and far behind the crack tip. A solution that models
the near-crack-tip fields is not needed for this calculation ; instead, a model of the residual
stress state in each layer of an uncracked multi-layer can be used. The residual stress model
also does not need to model stresses near the free edges of the layer.

All of the cases analyzed in this study assume a uniform free thermal contraction
within each layer and elastic material response. Under such assumptions, residual stresses
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Fig. 3. Normalized G vs normalized crack length for two-layer axisymmetric and planar delami-
nation problems, with £,/E, = 1 and v, = v, = 0.33.

in an uncracked multi-layer can be approximated by a multi-layer generalization of the
solution by Timoshenko (1925) for the stresses in a uniformly heated bimaterial strip. This
model assumes that each layer experiences a uniform free thermal strain (characterized by
«AT) relative to the layer below it. As in the Timoshenko model, layers behave as beams
or plates with linear stress variations through the thickness of each layer. It is shown in
Beuth and Narayan (1996) that a Timoshenko-based model can be applied to predict G,
and G?* for the problems of Figs 1a and 1b. Furthermore, G,, and GE** are related by the
formula

2G,
G = 2% (1)

<

The factor 2/(1-v) arises from the biaxial far-field stress state in the rectangular plate
problem, where two stresses of equal magnitude (o, and ¢.,) are released by the extension
of the delamination crack.

The energy release rate behavior for a thin-wall planar delamination problem (Fig.
la) is illustrated by results plotted in Fig. 3 for debonding of two layers, each of thickness
h, having the same elastic properties £ and v. The model used is symmetric, modeling
delaminations extending inward simultaneously from two edges. The half-length, L, of the
model is 254. The figure gives normalized energy released rate (the normalization is
described below) obtained from a finite element fracture model of this configuration, plotted
as a function of normalized crack length a/A. The figure shows that for this planar problem,
the steady-state energy release rate is reached within a/# = 1 and is maintained until the
part is almost separated into two pieces. Also, the steady-state energy release rate (G,
value obtained from the finite element fracture model is accurately predicted using a
Timoshenko-based model to calculate the potential energy differences between bonded and
debonded parts.

Identical arguments can be applied to rectangular plate planar delamination problems
(Fig. 1b), except that values of G5 are scaled by the factor 2/(1 —v) as indicated by eqn
(1). In Fig. 3 (and in plots for other cases presented in this paper) the value of G
calculated using a Timoshenko-based model is designated by a dashed line. Calculation of
G, and GP#* values is straightforward for any multi-layered configuration and details for
calculating G2*¢ for the problem of Fig. 3 are presented here as an example. For the two-
layer case in Fig. 3, because the debonded portions of the multi-layer away from the crack
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front are stress free, G%* is just the strain energy per unit length per unit width in the two-
layered part. A Timoshenko (1925) bimaterial strip analysis of this configuration gives the
following stress distribution in the fully bonded two-layer part, valid away from the free
edges:

E
0=0,=0,= mchT(—— 1/2—3/4y/h) (bottom layer),

C=0, =0, = aAT(1/2—3/4y/h) (toplayer). )

E
(1-v)

In eqn (2), y = 0 corresponds to the layer interface (y varies from —# to 0 for the bottom
layer and from 0 to + 4 for the top layer). The strain energy in the two-layer part is given

by
} 1—v
SE = (T) J‘UZ dv. (3)

Substituting for o and integrating over one half of the symmetric part gives

SE (2AT)*HBL, @)

_E
T 16(1—v)

where B is the part width, L is the half-model length and H = 24 is the total thickness of
the part. This yields a value for G?** of ;

E
plate — 2
GH = e (l_v)(acAT) H. (5)

Calculation of G2** for other configurations is similar. For multiple layers, the difference
between the potential energies of a fully bonded multi-layer and the debonded portions is
needed to determine GP**,

In the results presented in this paper, energy release rates are normalized with respect
to the G2 value of eqn (5), with definitions generalized for application to multi-layer
configurations. The energy release rate normalization parameter is

E
Gy = TPHAT)’H, 6)

where H is the total thickness of the part under consideration and xAT is the free thermal
strain mismatch between the layers (which is taken to be the same between all layers in the
four-layer cases studied in this paper). E,, is defined as E,, = X(E#h)/(H(1—v)). The
Poisson’s ratio, v is taken to be 0.33 for all layers in the cases presented in this study.

In Fig. 3, normalized energy release rates are also plotted for the same two-layer
configuration, but with an axisymmetrically extending crack as illustrated in Fig. 1c. Here
the radius of the circular multi-layer, R, equals 254. The plot shows that for the axisymmetric
problem, outside of the short crack regime, G increases steadily with @/A until the remaining
crack ligament becomes small. G then reduces to zero as the crack length is increased
further. The maximum energy release rate for the axisymmetric problem, designated in this
study as G, is higher than the steady-state energy release rate, G2'**, The transition from
short crack behavior occurs within a/# < 1, as in the plane stress planar problem. However,
the decay of G from its maximum value occurs over a larger crack length compared to the
plane stress planar problem.

The behavior for the axisymmetric problem of Fig. 3 is typical and is caused by the
non-uniform manner in which the radial and circumferential stresses, a,, and o, are
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Fig. 4. Normalized G vs normalized crack length for two-layer axisymmetric and planar delami-
nation problems, with E/E, = 1/3 and v, = v, = 0.33.

released by the extending axisymmetric crack. For short crack lengths, radial stress (g,,) is
released by the extending crack, but due to circumferential constraint behind the crack
front, circumferential stress (6yy) is not. The energy release rate corresponding to the release
of a single stress in the presence of a biaxial stress state 6,, = g is designated as G, in the
note of Fig. 3 and in the other energy release rate plots presented in this study. This “initial”
energy release rate, G, is also used in the Analysis section of this paper to help determine
an upper bound for the maximum energy release rate for an axisymmetrically extending
delamination. As the crack length is increased, the contribution of a4, to the energy release
rate increases due to gradual relaxation of the circumferential constraint behind the crack
front. This causes the observed steady increase in energy release rates with increasing a/h.

Figure 4 gives a plot of normalized G vs a/h for delamination of two axisymmetric
layers with the stiffness, £ = E/(1—v), of the lower layer three times that of the upper layer.
Three circular multi-layers with radii of 104, 25k and 35k are considered for comparison.
In all three cases, behavior similar to that shown in Fig. 3 is observed, with energy release
rates increasing steadily with a/A, then reaching a maximum before falling to zero as a/h
approaches R. Because strain energies do not scale proportionally with E,,, normalized
energy release rates are lower than those of Fig. 3. For the case R = 254, the crack length
over which a transition is made to steadily increasing energy release rates for short cracks
is greater in Fig. 4 than in Fig. 3. Similarly, the crack length over which the energy release
rate falls from its peak value to zero for long cracks is greater in Fig. 4 than in Fig. 3. The
maximum energy release rate for the R = 25k case shown in Fig. 4 occurs at a/h = 19,
compared to a/h = 20 for the previous problems with no elastic mismatch (Fig. 3). This
parallels behavior observed in planar delamination problems (including the planar results
plotted in Figs 3 and 4), where the transition to and from steady-state conditions occurs over
greater crack lengths as material mismatches are increased. As mismatches are increased, the
effects of free edges exist at greater distances into a part. Similarly, for cases of large
material mismatch a larger uncracked ligament length or radius is needed to achieve full
thermal mismatch stresses ahead of the crack tip.

In all of the plots of Fig. 4 (including that for the planar problem), the transition from
short crack behavior takes place within a/k < 1. Also, for short crack lengths, energy release
rates for all three cases in Fig. 4 approach a single value as the crack length is decreased
(before falling to zero) and this value corresponds to G.. This occurs because in the short
crack regime, each of the problems is essentially the same, with a single stress being released
due to crack extension. In comparing the axisymmetric cases plotted in Fig. 4, however, it
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Fig. 5. Normalized G vs normalized crack length for two-layer axisymmetric and planar delami-
nation problems, with E,/E, = 1/40 and v, = v, = 0.33.

is clear that the crack lengths over which energy release rates decay from their maximum
values and the G, values themselves are a function of part radius. The decrease in energy
release rate from a value of G,,,, when the uncracked ligament becomes small is due to a
complex interaction between increasing release of a4 behind the crack front, which increases
G, and the decline in G caused by reduction of uncracked ligament radius. Predicting the
crack length at which G = G,,, would be difficult. In the plots of Fig. 4, it is apparent,
however, that the crack lengths over which G falls from G,,,,, to zero increase with increasing
R and that the dependence of this long crack behavior on multi-layer radius is most
pronounced for smalivalues of R (i.e., R < 10h). Values of G,,,, also increase with increasing
R/h. This can be explained by the fact that as the multi-layer radius is increased, the regions
in the multi-layer near the free edge become a smaller fraction of the part volume. This
causes the average energy release rate due to complete debonding of the multi-layer (defined
as the total potential energy released in completely separating the multi-layer divided by
total debonded area) to increase with increasing part radius, which in turn causes G, to
increase. In the Analysis section of this paper, it is shown that the limiting value of average
energy release rate for large radius multi-layers is simply G2, An upper bound for G, is
derived in terms of G; and G%*° and this upper bound is approached as the part radius is
increased.

Figure 5 provides a plot of normalized G vs a/h for the case of two axisymmetric layers
with an extreme case of elastic mismatch. The stiffness, E, of the bottom layer is 40 times
that of the top layer. Trends with respect to stiffness mismatch observed between Figs 3
and 4 are continued in Fig. 5. The low values of the normalized energy release rates are
again due to the fact that strain energies in two-layer problems do not scale proportionally
with E,,.. The decline of G from G, for this case is over a larger a/h with G,,,, occurring
at a/h = 16.

Figures 6 and 7 provide plots of normalized energy release rates for two representative
four-layer configurations. Both multi-layers consist of alternating material layers, with each
layer having the same thickness. In both cases, it is assumed that the free strain mismatch,
characterized by an aAT, is the same between each layer. This was done in the numerical
model by specifying that each layer have the same coefficient of thermal expansion, o, and
using the same temperature mismatch, AT, between individual layers. In modeling suc-
cessive deposition of layers in actual multi-layer configurations, appropriate values of aAT
would be specified based on superposition arguments used to model the successive de-
position of each layer, coupled with known layer coefficients of thermal expansion and
layer temperature changes.
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Fig. 7. Normalized G vs normalized crack length for four-layer axisymmetric and planar problems of
a single stiff layer debonding from the bottom of the multi-layer, with E,/E, = 1/3and v, = v, = 0.33.

Figure 6 provides a plot of normalized G vs a/h for a four-layer axisymmetric multi-
layer with debonding at the mid-plane. The stiffness, £, of the layers alternates with a ratio
of 1:3. G for this axisymmetric problem exhibits behavior similar to that of G for the two-
layer problems, increasing steadily with a/h and then reducing to zero as the crack tip
approaches the center of the multi-layer. The difference in normalized G vs a/h behavior is
evidenced in a local peak in G for short cracks for this four-layer axisymmetric problem. A
similar peak is observed for the four-layer thin-wall (plane stress) planar problem, as can
be seen in the data plotted in Fig. 6 denoted by planar delamination (plane stress). The
reason for this behavior is the existence of low normalized energy release rates for long
delamination cracks for this four-layer problem. For short cracks, the energy release rate
behavior is the same for a given material combination and strain mismatch (regardless of
the number and thickness of the layers). Thus, the short crack behavior of G vs a/k of this
four-layer problem is the same as that for the two-layer case shown in Fig. 4. However, the
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long crack energy release rate for this problem is low, causing the short crack behavior to
overshoot the long crack portion of the energy release rate curve. The low energy release
rates for long cracks exhibited in Fig. 6 are a consequence of the shape of the debonded
halves of this four-layer part. The two debonded portions of this part remain curved (with
a positive curvature) after delamination. The curvature of the debonded layers decreases
the strain mismatch along the mid-plane interface, which decreases the energy released by
debonding along the mid-plane. Because they are a consequence of curvature in debonded
portions of a part, energy release rate peaks for short cracks are not observed in two-layer
debonding configurations or in multi-layered configurations where one of the two debonded
pieces is not curved. Figure 7 shows normalized G vs a/h for a single stiff layer debonding
from the bottom of an axisymmetric four-layer part. Because the single stiff layer is not
curved after debonding, the normalized G for long delamination cracks for this problem is
relatively large and no peak in G is observed for short cracks.

The plot of Fig. 6 shows clear parallels between the planar and axisymmetric behavior
of energy release rates in cases exhibiting energy release rate peaks for short cracks. Peaks
in G for short cracks make it possible to get short crack initiation and arrest. However,
because short crack energy release rate peaks are a consequence of small magnitudes of
long crack energy release rates, they are a cause of concern only if they occur on com-
paratively brittle interfaces.

This study focuses on the behavior of G as a function of delamination crack length in
multi-layers, but information about the mode mix of delamination cracks is also required
because the critical energy release rate for interfacial debonding, G, is mode mix dependent.
In interfacial fracture problems, mode mix may be defined in terms of the phase angle of
the complex stress intensity factor, K (see Rice (1988) or Suo and Hutchinson (1990), for
example). K is typically defined with respect to the stresses ahead of the crack tip, given by

K
G, +i0,, = x“, (7
2nx
where for materials 1 and 2
1 3 +#2K1:]
e=—In|———|. 8
2n [ﬂz‘l‘#lkz ®

The x and y coordinates used in eqn (7) are local crack tip coordinates, as shown in Fig. 1.
In eqn (8), w(j = 1,2) is the material shear modulus, kx; = 3—v)/(1+v) (j = 1,2) for
plane stress and k; =(3—4v)) (j = 1,2) for plane strain. K, the complex stress intensity
factor, takes the dimensional form

K = K, +iK, = f x (stress) x (/hh™%), ©)

where fis non-dimensional and, in general, a complex function of the material properties
and the specimen geometry. The parameter 4 is the characteristic length of the problem.
For a long delamination crack between layers of equal thickness, the characteristic length
is the layer thickness, 4. The mode mix of an interfacial crack can be specified by the angle

¥, defined as
Im(Kh*)
=tan™' | ———=|. 10
Y = tan [Re(Kh”e)] (10)

y is defined to be independent of 4, the characteristic length, and can be considered as a
consistent measure of the ratio of normal stress to shear stress ahead of the crack tip.
Consideration of eqns (7) and (10) shows that y is the phase angle of the complex quantity
6,,+ ig,, minus the phase angle of the quantity (x/h)".
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Fig. 8. Mode mix quantity, y vs normalized crack length for the two-layer axisymmetric delami-
nation problem of Fig. 4 (£,/E;, = 1/3 and v, = v, = 0.33).

Figure 8 shows a plot of ¥ vs a/A for a typical case of axisymmetric debonding of two
layers with a stiffness (£) ratio of 1:3 (energy release rates for this case are plotted in Fig.
4). The mode mix does not change significantly with crack length. As a result, for this
problem energy release rates for all crack lengths can be compared to the same G. value in
designing delamination resistant multi-layers. This is in contrast to a more complicated
problem in which both G and the mode mix (and thus G_) change with crack length. In all
of the cases presented in this study, modes of crack extension are essentially constant for
crack lengths where G is steadily increasing.

In each of the axisymmetric delamination cases presented in this section, G increases
steadily, reaching a value of G, at a value of a/A that is problem dependent. This behavior
is more complicated than the steady-state energy release rate behavior of planar problems.
In the next section, a conservative upper bound for G, for the axisymmetric problem is
derived. The upper bound for G, is given in terms of G and G2 values for corresponding
planar delamination problems and therefore can be calculated using only a residual stress
model for the uncracked multi-layer.

5. ANALYSIS

In this section, a conservative upper bound for Gy, designated as Gim is determined
for axisymmetric multi-layer delamination problems. A simple expression for Gim¥ is
obtained by establishing links between axisymmetric and planar multi-layer delamination
problems and using them within an approximation of energy release rate dependence on
crack length. One link that can be made between axisymmetric and planar multi-layer
delamination problems concerns the total potential energy released due to separation of a
part into two pieces. Consider rectangular and circular multi-layers with the same layering
geometry and the same differential thermal strains between layers, such as the problem
illustrated in Figs 1b and lc. In the rectangular plate problem of Fig. 1b, let L = R, where
R is the radius of the circular multi-layer problem of Fig. Ic. Also, let the multi-layer width,
B, equal 7R, so that the planar area of the rectangular plate problem equals nR?, the planar
area of the circular multi-layer problem. Ignoring slight differences due to edge effects, for
debonding along the same interface, the total potential energy released in separating this
rectangular part (Fig. 1b) into two pieces must equal the total potential energy released in
separating the circular-shaped part (Fig. lc) into two pieces. The total potential energy
released in separating the rectangular part can be expressed as
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L
PE, ., = BJ Gda ~ nR*GPae, (1n

0

where the approximate value of nR?*GP™¢ is the debonded area multiplied by the steady-
state energy release rate, which is accurate for parts having sufficiently large radii that
regions close to the free edges are a smali fraction of the part volume.

A second link that can be made between the planar and axisymmetric problems
concerns the energy release rate behavior of relatively short axisymmetrically extending
cracks. The crack lengths of concern are just outside the short crack regime, in the portion
of the plot where energy release rates begin to increase steadily with crack length. If both
radial and circumferential stresses were fully released, then the energy release rate just
outside the short crack regime would equal GE*, the steady-state energy release rate of a
rectangular plate (biaxial stress) planar delamination problem. As noted in the Numerical
Results section, for short crack lengths an axisymmetrically extending crack will release
radial stresses (o,,), but not circumferential stresses (o49). This is due to circumferential
constraint behind the crack front, in the debonded portions of the multi-layer. As a result,
a uniaxial (g4) state of stress is left behind the crack front as it advances. The steady-state
energy release rate associated with the release of a uniaxial stress (such as o) is G, the
steady-state energy release rate for planar delamination of a thin-walled multi-layer (Fig.
la). Thus the energy release rate accompanying the release of the stress g, for short
axisymmetrically extending cracks should be the difference in energy release rates of the
biaxial and the uniaxial cases. This energy release rate, designated in this study as G,, is
thus equal to G2 —G,,. In plots such as those of Figs 3-7, this should be the value the
energy release rate approaches as the crack length is reduced, outside of the short crack
regime. Values of G, are provided in Figs 3-7, and the numerical results clearly approach
G, as the crack length is reduced (before falling to zero at a/h = 0).

The energy release rate behavior for axisymmetric problems is difficult to model for
all crack lengths because of the complex manner in which the stresses o, and oy are
released. In order to determine a value for G G is assumed to have a simple (yet
representative) dependence on the normalized crack length a/A. Based on the plots of G/G,
vs a/h of Figs 3-7, the energy release rate behavior for axisymmetric problems can be
reasonably approximated as having a bilinear dependence on a/A. This bilinear approxi-
mation would consist of an initial vatlue of G, at a/h = 0, increasing linearly to G, at a
crack length of a,,,, and then falling to zero at a = R.

Use of a bilinear G vs @ approximation would be reasonable, but would require
specification of a problem-dependent value of a,,,,. For a bilinear curve it can be shown,
by varying the crack length (a,,,) at which G is maximum while keeping the total energy
released due to debonding (related to the area under the G vs a curve) constant, that G,
is greatest for a,,, = R. Therefore, for the purpose of determining a conservative upper
bound for G, it is assumed that a,,, = R. This final assumption results in a linear
approximation for energy release rate behavior, with values of G; at a =0 and G, at
a = R. The linear approximation for G vs a/h is thus given by the equation

) alh+G,, (12)

Glinear = R / h

where R is the multi-layer radius.
The total potential energy released for complete axisymmetric debonding of a circular
multi-layer can be expressed as

PE.. = 2nh2r (%) Gd(a/h). (13)

0

Substituting Gyne.. for G ineqn (13) and equating with the approximate total energy released
for planar debonding of the same multi-layer configuration (see eqn (11)) gives
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Table I. Normalized G, and Glny values for the axisymmetric cases in Figs 3~7

G Gt
Case (Actual) Aanl b (Predicted)
1. Two Layers 1.33 20 1.67
E/E,=1,R=25h
2. Two Layers
E/E, =173
R =10n 1.03 6 1.54
R =25h 1.18 19 1.54
R =35h 1.22 28 1.54
3 Two Layers 0.33 16 0.49
E/E,=1/40, R = 25h
4. Four Layers 0.42 19 0.54
Mid-plane Debonding
E/E, =1/3,R=25h
5. Four Layers 0.73 19 0.93
Stiff Layer Debonding from
Bottom
EE,=1/3, R=25h
R (R—a\[ (Gmax—G:
| 2n|—— (—ﬂf—ﬁza/h+6i d(a/h) = nR*GE==, (14)
. h Rih

Substituting for G,, integrating and solving for G, gives the following expression for

limit ,
G max

Gimit = GI*°+2G,, = 26, (ﬁ) 0

an upper bound for G,,,, for the axisymmetric problem.

Comparison between values of G and actual values of G,,, from Figs 3-7 shows
that the G'™" values are indeed conservative (see Table 1). For delamination problems with
mild mismatches in elastic layer properties and for problems with large R, values for Glimit
are close to the numerically determined G,,, values. For problems with mild stiffness
mismatches, this is due to values of a,,, that are close to R. For problems with large R,
values of G,,., will approach G as R is increased, because a larger portion of the G vs a
curve is essentially linear, matching the G dependence on a that is assumed in deriving
Gimt For problems with extreme mismatches in elastic layer properties and for problems
with small R, the predicted values are significantly higher than the actual G, values. It
should also be noted, however, that G values are quadratic in stress and if stress intensity
factors are compared then the difference between actual and predicted values is less than
that indicated in Table 1.

An upper bound for G has thus been determined for the axisymmetric multi-layer
delamination problem based on known expressions for the steady-state energy release rates
of corresponding planar problems. A fracture analysis of the axisymmetric problem is not
required to determine this quantity. Calculated values for Gim can be used to design
delamination-resistant interfaces, where requiring that Gi™' < G, will ensure that axi-
symmetric delamination does not occur on the interface under consideration.

6. CONCLUSIONS

The present work provides an in-depth study of residual stress-driven delamination in
axisymmetric multi-layers, with specific attention given to the behavior of energy release
rates. Principles developed can be used in a wide range of multi-layer debonding appli-
cations. In such problems, the non-uniform release of in-plane stresses causes the energy
release rate to increase steadily, reaching a maximum value at a crack length that is problem
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dependent. Numerical test cases presented in this study assume elastic behavior during
residual stress build-up and uniform thermal contractions in each layer, but the methods
outlined are applicable to any problem with residual stress distributions that are indepen-
dent of r and 6 coordinates. Based on simple potential energy arguments, a conservative
upper bound has been determined for G,,,, the maximum energy release rate for all
delamination crack lengths. This upper bound, Ghny, is calculated in terms of steady-state
energy release rates for corresponding planar configurations by relating axisymmetric and
planar multi-layer debonding problems. Determination of Ghir¥ does not require a fracture
mechanics-based analysis, greatly simplifying the analysis and understanding of axi-
symmetric debonding problems. In combination with measured critical energy release rates,
Gume values can significantly aid the design of delamination-resistant multi-layer
configurations.
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